
Revista Informatica Economică nr.3(47)/2008

82

Multi Channel Architecture Model
Based on Service Oriented Integration

Ion LUNGU, Davian POPESCU, Anda VELICANU
Academy of Economic Studies, Bucharest, România

The volume of data and numerous applications developed within a company can often

generate a redundancy difficult to control. In the same time, the homogeneous or heterogene-
ous management systems of the companies become overcharged for obtaining useful informa-
tion from databases. For this reason, the organizations develop specialized systems for the in-
tegration of existing applications and data. To achieve these systems, there are used a number
of technologies, methods and architectures such as SOA architecture. In this article, are pre-
sented the components of SOA architecture, its advantages and a solution for integrating ap-
plications at the Presentation Tier.
Keywords: application integration, SOA architecture, integration model, architectural levels,
information systems.

Introduction
The information system of an organiza-

tion is a constantly increasing entity. Yet
there is a risk that the new requirements, the
new business requirements determine the
adoption of new specialized systems with the
immediate consequence of generating a re-
dundancy in business logic, data and respon-
sibilities.
This scenario belongs to a not so far histori-
cal period in which the technological support
did not offer solutions tailored to rationalize
the applications’ resources in the company. It

is enough to remember the period in which
there was achieved a vertical application for
each subsystem (channel) used. Later, there
came the need to integrate these applications
through a point-to-point connection, using
from time to time the specific integration
way, best suited for that type of interaction.
In this scenario, the proliferation of the sys-
tems and connections leads to a complexity
represented by numerous interconnected enti-
ties (literature defines this as "spaghetti ar-
chitecture") as can be seen in Figure 1.

Fig.1. Integrating the vertical applications

Nowadays many organizations are still facing
with the complexity of managing induced by
the two approaches described in Figure 1.
This management has obvious repercussions
on management cost, and worse, very often it
limits the development park of applications,
where such developments require ad-hoc im-
plementation and management of new chan-
nels for interaction with existing features.

2. The SOA Architecture Model – Solution
For Integrating The Applications
At present there is a technological solution
that offers alternative models and standard
guaranteeing reuse, rationalization and so, ef-
ficiency. The solution to the problems of ra-
tionalization is a SOA (Service Oriented Ar-
chitecture) model, namely the adoption of a
service-oriented architecture and integration
[5]. Business functions are provided by spe-

1

Revista Informatica Economică nr.3(47)/2008

83

cialized systems and set to use through a
standardized interface. Central Processing
Unit becomes "the service" seen as a reusable

software used through a request / reply inte-
raction, which automatically runs a business
function (Figure 2):

Fig.2. The new service-oriented strategy

The services are modular elements that can
be composed as needed; the architecture en-
sures the technology independent interopera-
bility in which these services were performed
or natively displayed for use.
The main advantage of SOA model adoption
lies in drastically reducing the complexity of
the general infrastructure because the appli-
cations’ logic is organized in specific mod-
ules or services, so it’s not duplicated in sev-
eral systems. Also the number of the ma-
naged connections is the same as the number
of co-opted platforms.
Another fundamental strategic advantage is
the fact that, using a SOA architecture can
easily co-opt information systems, resulting
integrated processes belonging to external
entities, such as partners or suppliers. The
purpose is to automate these processes, as
much as possible, and to hasten the return in-
formation to and from the outside.
Even if many of these business processes are
created for their internal use within the com-
pany, their evolution leads to sharing this
logic between the companies or foreign part-
ners. Using services exposure infrastructure,
not only it integrates applications with the
aim of sharing information, but it provides
the infrastructure for reusing the business
logic in inter-company processes (by using a
business process oriented approach) [2].
In recent years, there has been brought a big
help in this area due to the introduction of
Web Services standard. This is a today de-
facto standard for interoperability of plat-

forms that allows the use of Internet penetra-
tion to provide access to remote applicative
services.
Another advantage of using SOA architecture
is that streamlining the services provides, to
those who are dealing with businesses within
an organization, a more concrete vision of
the functions park, data and responsibilities
in the company's information system. The in-
troduction of SOA architectures are not an
impact on existing systems. It may take a
gradual approach of short steps through es-
tablishing and continuously growing a ser-
vice’s park published and used according to
the priorities of the users [3].
A good approach, in terms of design software,
considers that the best solution is to structure
the development of applications in layers /
tiers, defining the environment and the roles
of each. In this way, specific components can
be isolated and may eventually independently
evolve from the rest of the structure. Benefits
can be identified in simplifying the mainten-
ance of a system, in which there is no logic
duplication, but also in the effectiveness of
components which, being specialized, are op-
timized to perform their tasks.
The philosophy that drives the design of this
architecture is the "separation of logics". The
multichannel architecture and the service-
oriented architecture should enable the de-
velopment of applications in which there are
differentiated logics that depend on a specific
channel used for cross-linkers, business, and
which implements a business’ processes. The

Revista Informatica Economică nr.3(47)/2008

84

architecture imposes some rules for develop-
ing the applications, scheduling them, and
providing services that allow abstracting the
development applications of any technologi-
cal connotation, with their simplification as
result. These services are provided by forcing
the positioning of certain logics in places

well defined.
In the light of multichannel and service
orientation, the logical architectural model
identifies the tiers shown in Figure 3. Within
each tier there are included architectural ser-
vices (shown in the figure) and applied com-
ponents [1].

Fig.2. N-tier model: positioning the components

Security Tier - is the architectural tier which
centralizes all the operations relating to secu-
rity, both to identify the user and his right to
access a system (authentication) and to con-
trol over its operability by defining areas in
which the user is allowed to operate (authori-
zation), in terms of business functionality and
of data visibility.
Presentation Tier - Front End - is dedicat-
ed to the management of the interaction be-
tween various users and the system, trans-
forming the user’s requests in invocations of
the business procedures through the man-
agement level, and organizing and formatting
the output with the channel and the used de-
vice in a consistent way, not to mention the
practical user profile. At this level there are
managed the logics that govern the conversa-
tional flow of the various functions and the
logical presentation of the system.
Service Management & Invocation Tier -
Middle Tier - is the architectural level that
separates the presentation tier from the busi-
ness logic, both in terms of functionality and
technology. This tier is interposed between
the interface, which manages the dialogue,
and the interaction with the user and the ser-
vices tier, where the functional applicative
logic can be found. At this level there are

contained components that allow the integra-
tion of heterogeneous technologies and plat-
forms, eliminating the issues of integration of
each application.
Services Tier - Back End - is the functional
nucleus of the system, where can be com-
pletely found the applicative logic that ac-
cesses the business data. In a service-oriented
approach, each service is independently de-
veloped, that is, any implementation is inde-
pendent of the previous executions. How it
works depends exclusively on the entry va-
riables and not on the previous history. The
service tier makes it possible to expose the
various applications’ services through pub-
lished interfaces that will be raised through
the Middle Tier, by the various applicative
dialogues.
Data Tier - is the logic tier in which can be
found the business data. Developing the
software provides that the access to data will
not be attached to every practical way, but
will be centralized in specific data access
modules (Input / Output modules) in which
attention is placed on the physical database,
exposing to applicative services logical struc-
tures that are independent of the specifics of
one or more DBMS (Data Base Management
System).

Revista Informatica Economică nr.3(47)/2008

85

3. A Solution For Integrating An Applica-
tion At The Presentation Tier
The presentation tier can be designed using
the MVC (Model-View-Controller) paradigm,
which is considered by far the most appropri-
ate. It became a de-facto standard (practically
unique) for web software architectures. MVC
emerged as a methodology to separate and
detach functionality of development applica-
tions and it is most suitable for exposing the
logic in a multichannel service-oriented ar-
chitecture.
The paradigm requires thinking an applica-
tion in the following logic tiers:
o the model - the data or service (if SOA);
o the view - is the way to view the data or the
results of a SOA service;
o the controller - manages each user’s request,
supervising the user’s browsing and provid-
ing services to access business logic and
components for viewing data returned to the
user.
Two of the immediate benefits offered by the
use of MVC are the net separation of the log-
ic view from the business logic and the exis-
tence of a unique point of entry into the sys-
tem where it is thus possible to centralize
several "technical" behaviors of an applica-
tion. A controller that can identify the de-
vice/channel or the language and the location
of the user in order to compel the architecture
to different behaviors depending on the user
receives all requests sent to an application.

The controller has the ability to perform
checks on the correct user’s navigation and it
can make requests to the security tier’s com-
ponents to check the user’s ability regarding
a specific feature /a business request.
Presentation Tier’s components, listed below,
will be carried out as extensions of the Struts
framework, the most widespread implemen-
tation of the MVC paradigm. So it is used as
the kernel of the Front-End architecture. Us-
ing Struts as a frame of reference is a tech-
nological choice, which is a de-facto standard
in J2EE.
The need to develop applications in SOA ar-
chitecture (multichannel / multi-device, mul-
ti-company) requires improving the baseline
with other specific components. The diagram
in Figure 4 illustrates the components and
their interactions in order to achieve a Front-
End architecture. In blue there are drawn the
architectural components, namely those parts
which do not depend on a specific applica-
tion. With orange, there are listed applicative
units or those software units representing the
various applications hosted by the architec-
ture.
Further, there are described the features of all
the components in order to give a panorama
of how complex the presentation tier operates.
The complexity of the architectural scheme
can be reduced in the development of future
applications.

Fig.3. Schema of the Presentation Tier’s components

In terms of architecture that we have pro-
posed, there can be identified the following
entities for an application:

o the application - a set of business processes
with the same logic;
o the process - a whole consisting of the user

Revista Informatica Economică nr.3(47)/2008

86

interface and the logic that implements a
business process (for example: the search
process for selecting an action with the aim
of its trading);
o the function - each component function of
the process;
o the dialogue - is a part of a function (the

implementation) in terms of user’s interface
and related functions of a business (for ex-
ample: selecting a stock symbol). Any func-
tion is made up of at least one dialogue.
In Figure 5 are presented the inclusion /
structure relations between the entities de-
fined above:

Fig.4. Entities identified in the analyzed architectural model

The composition of dialogues in functions is
made using the following mechanisms:
1.GOTO: within Function 2, at the end of
Dialogue 1, is running Dialogue 2;
2.CALL: a dialogue can not call another at its
end but at a random time of its life cycle and
it suspends the implementation (suspension
phase); at the end of executing the called di-
alogue, the initial dialogue resumes the flow
of navigation in the exact same point where it
was discontinued (resumption of execution
phase).
From this solution there can be inferred also
the possibility of re-using some dialogues in
several functions (such as Dialogue 1 is
reused in Function 2).

4. Conclusions
The realization of each service in part is not
only depending on the execution technology
platform. It also depends on the functional
requirements or the need to re-use compo-
nents and programs that already exist.
Usually the implementing the services should
follow a paradigm on three tiers, which sepa-
rates into distinct modules or components:
o logical access to data;
o elementary business logic that implements
the minimum re-usable features;
o logical complex that aggregates and devel-
ops individual elementary logic in order to

provide a service with a business significa-
tion well defined.
It is obvious that this definition is qualitative
and open to various interpretations, and the
design of a service can not ignore a phase of
analysis of functional requirements and even-
tually of the individual sub-elementary or al-
ready completed logic. In general, the rec-
ommendation is to maintain a strict separa-
tion between the access to data and the de-
composing in elementary consistent logic,
having the characteristics of a business and
the number of potential reuse.

Refereces:
[1] David S. Linthicum – „Next Generation Applica-
tion Integration: From Simple Information to Web
Services”, Addison-Wesley Pub Co; 1st edition, 2003
[2] Dirk Krafzig, Karl Banke, Dirk Slama – „Enter-
prise SOA : Service-Oriented Architecture Best Prac-
tices (Coad)”, Prentice Hall PTR; 1st edition, 2004
[3] Douglas K. Barry – „Web Services and Service-
Oriented Architectures: The Savvy Manager's Guide”,
Morgan Kaufmann, 2003
[4] James McGovern, Scott W. Ambler, Michael E.
Stevens, James Linn, Elias K. Jo, Vikas Sharan – „The
Practical Guide to Enterprise Architecture”, Prentice
Hall PTR; 1st edition, 2003
[5] Lungu I, Bologa R, Diaconiţa V, Bâra A, Botha I –
„Integrarea sistemelor informatice”, Editura ASE,
2007
[6] Thomas Erl – „Service-Oriented Architecture : A
Field Guide to Integrating XML and Web Services”,
Prentice Hall PTR, 2004

